Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
AMIA Annu Symp Proc ; 2022: 396-405, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-20241303

RESUMEN

Including social determinants of health (SDoH) data in health outcomes research is essential for studying the sources of healthcare disparities and developing strategies to mitigate stressors. In this report, we describe a pragmatic design and approach to explore the encoding needs for transmitting SDoH screening tool responses from a large safety-net hospital into the National Covid Cohort Collaborative (N3C) OMOP dataset. We provide a stepwise account of designing data mapping and ingestion for patient-level SDoH and summarize the results of screening. Our approach demonstrates that sharing of these important data - typically stored as non-standard, EHR vendor specific codes - is feasible. As SDoH screening gains broader use nationally, the approach described in this paper could be used for other screening instruments and improve the interoperability of these important data.


Asunto(s)
COVID-19 , Determinantes Sociales de la Salud , Estudios de Cohortes , Disparidades en Atención de Salud , Humanos , Tamizaje Masivo
2.
JMIR Med Inform ; 10(9): e39235, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2022413

RESUMEN

BACKGROUND: The adverse impact of COVID-19 on marginalized and under-resourced communities of color has highlighted the need for accurate, comprehensive race and ethnicity data. However, a significant technical challenge related to integrating race and ethnicity data in large, consolidated databases is the lack of consistency in how data about race and ethnicity are collected and structured by health care organizations. OBJECTIVE: This study aims to evaluate and describe variations in how health care systems collect and report information about the race and ethnicity of their patients and to assess how well these data are integrated when aggregated into a large clinical database. METHODS: At the time of our analysis, the National COVID Cohort Collaborative (N3C) Data Enclave contained records from 6.5 million patients contributed by 56 health care institutions. We quantified the variability in the harmonized race and ethnicity data in the N3C Data Enclave by analyzing the conformance to health care standards for such data. We conducted a descriptive analysis by comparing the harmonized data available for research purposes in the database to the original source data contributed by health care institutions. To make the comparison, we tabulated the original source codes, enumerating how many patients had been reported with each encoded value and how many distinct ways each category was reported. The nonconforming data were also cross tabulated by 3 factors: patient ethnicity, the number of data partners using each code, and which data models utilized those particular encodings. For the nonconforming data, we used an inductive approach to sort the source encodings into categories. For example, values such as "Declined" were grouped with "Refused," and "Multiple Race" was grouped with "Two or more races" and "Multiracial." RESULTS: "No matching concept" was the second largest harmonized concept used by the N3C to describe the race of patients in their database. In addition, 20.7% of the race data did not conform to the standard; the largest category was data that were missing. Hispanic or Latino patients were overrepresented in the nonconforming racial data, and data from American Indian or Alaska Native patients were obscured. Although only a small proportion of the source data had not been mapped to the correct concepts (0.6%), Black or African American and Hispanic/Latino patients were overrepresented in this category. CONCLUSIONS: Differences in how race and ethnicity data are conceptualized and encoded by health care institutions can affect the quality of the data in aggregated clinical databases. The impact of data quality issues in the N3C Data Enclave was not equal across all races and ethnicities, which has the potential to introduce bias in analyses and conclusions drawn from these data. Transparency about how data have been transformed can help users make accurate analyses and inferences and eventually better guide clinical care and public policy.

3.
AMIA ... Annual Symposium proceedings. AMIA Symposium ; 2022:396-405, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1940191

RESUMEN

Including social determinants of health (SDoH) data in health outcomes research is essential for studying the sources of healthcare disparities and developing strategies to mitigate stressors. In this report, we describe a pragmatic design and approach to explore the encoding needs for transmitting SDoH screening tool responses from a large safety-net hospital into the National Covid Cohort Collaborative (N3C) OMOP dataset. We provide a stepwise account of designing data mapping and ingestion for patient-level SDoH and summarize the results of screening. Our approach demonstrates that sharing of these important data - typically stored as non-standard, EHR vendor specific codes - is feasible. As SDoH screening gains broader use nationally, the approach described in this paper could be used for other screening instruments and improve the interoperability of these important data.

4.
Clin Epidemiol ; 14: 369-384, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1760056

RESUMEN

Purpose: Routinely collected real world data (RWD) have great utility in aiding the novel coronavirus disease (COVID-19) pandemic response. Here we present the international Observational Health Data Sciences and Informatics (OHDSI) Characterizing Health Associated Risks and Your Baseline Disease In SARS-COV-2 (CHARYBDIS) framework for standardisation and analysis of COVID-19 RWD. Patients and Methods: We conducted a descriptive retrospective database study using a federated network of data partners in the United States, Europe (the Netherlands, Spain, the UK, Germany, France and Italy) and Asia (South Korea and China). The study protocol and analytical package were released on 11th June 2020 and are iteratively updated via GitHub. We identified three non-mutually exclusive cohorts of 4,537,153 individuals with a clinical COVID-19 diagnosis or positive test, 886,193 hospitalized with COVID-19, and 113,627 hospitalized with COVID-19 requiring intensive services. Results: We aggregated over 22,000 unique characteristics describing patients with COVID-19. All comorbidities, symptoms, medications, and outcomes are described by cohort in aggregate counts and are readily available online. Globally, we observed similarities in the USA and Europe: more women diagnosed than men but more men hospitalized than women, most diagnosed cases between 25 and 60 years of age versus most hospitalized cases between 60 and 80 years of age. South Korea differed with more women than men hospitalized. Common comorbidities included type 2 diabetes, hypertension, chronic kidney disease and heart disease. Common presenting symptoms were dyspnea, cough and fever. Symptom data availability was more common in hospitalized cohorts than diagnosed. Conclusion: We constructed a global, multi-centre view to describe trends in COVID-19 progression, management and evolution over time. By characterising baseline variability in patients and geography, our work provides critical context that may otherwise be misconstrued as data quality issues. This is important as we perform studies on adverse events of special interest in COVID-19 vaccine surveillance.

5.
J Am Med Inform Assoc ; 28(2): 393-401, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1054313

RESUMEN

Our goal is to summarize the collective experience of 15 organizations in dealing with uncoordinated efforts that result in unnecessary delays in understanding, predicting, preparing for, containing, and mitigating the COVID-19 pandemic in the US. Response efforts involve the collection and analysis of data corresponding to healthcare organizations, public health departments, socioeconomic indicators, as well as additional signals collected directly from individuals and communities. We focused on electronic health record (EHR) data, since EHRs can be leveraged and scaled to improve clinical care, research, and to inform public health decision-making. We outline the current challenges in the data ecosystem and the technology infrastructure that are relevant to COVID-19, as witnessed in our 15 institutions. The infrastructure includes registries and clinical data networks to support population-level analyses. We propose a specific set of strategic next steps to increase interoperability, overall organization, and efficiencies.


Asunto(s)
COVID-19 , Registros Electrónicos de Salud , Difusión de la Información , Sistemas de Información/organización & administración , Práctica de Salud Pública , Centros Médicos Académicos , Humanos , Sistema de Registros , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA